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ABSTRACT

The classical Levinson-Durbin linear prediction formulas for real valued input sequences

are examined and compared to the recently proposed split-Levinson formulas. Both the

autoregressive linear predictor model and the adaptive lattice model are used to formu-

late the new split-Levinson algorithms. A brief introduction to the theory of s\ninmetric

-,,mx n1-ials is Presc,i,d t3 furm ije basi5 ,i the new algorithms. Computer simulations

are used to test and compare the computational accuracy of the new algorithms for \R

filter coefficient estimation, parameter estimation for a moving average process, and

spectral estimation of sinusoids in white noise. Research reults indicate that the new

algorithms reduce the number of real multiplications required for a kl* order AR filter

problem by one-half, and they are applicable to both the extended Prony method of

spectral estimation and the estimation of moving average parameters.
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1. INTRODUCTION

A. OBJECTIVE

The classical Levinson algorithm is known to provide solutions to real valued, linear

systems involving Toeplitz structures. The computational cost for these solutions. is

known to be O(k. where k indicates the filter order. It has recently been proposed that

the classical algorithm may be transformed into 2 simpler algorithms, using the theory

of symmetric polynomials, and that either of these algorithms can be used to to solve for

the predictor polynomial of order k at a reduced computational cost. (Ref I: p. 4701

These new algorithms are termed the split-Levinson algorithms because their basis

is formed from the concept of symmetric polynomials. These are not new in theory, but

the application of the process to linear prediction is a new concept. Symmetric

polynomials are based on the Barlett Bisection Theorem [Ref. 2 " pp. 1074-10761. where

a system that possesses symmetry about a point, such as a Toeplitz matrix, can be de-

composed into a symmetric and an antisymmetric part. The unique point of the theory,

is that either part may be used to solve the problem, or a combination of both parts can

also ne used in Lhe Nuoution. Duiit, our raszaich we sha!! only consider real data se-

quences.

The split-Levinson case also has a lattice structure as the classical case. However.

ts wil! be shown, the structure of this lattice shows little resemblance to its classical

counterpart. A derivation of a revised split lattice structurc, ard its recursivc 2,0?'ithm

was attempted in order to represent the split lattice in a form similar to that of the

classical structure. Although unsuccessful, the derivation procedure is presented for

subject matter continuity.

Computer programs have been written to implement the new algorithms and com-

pare them to the classical algorithms. Additionally, computer programs are included to

apply the split-Levinson algorithm for two cases, where the computational efficiency of

the new algorithm could be of substantial benefit. These cases include the Moving AV.-

erage (MA) problem, where the parameters of a MA n odel must be determined from the

given data, and an extension of the Prony method of spectral estimation, where a least

squares estimation of the presence of sinusoids in white noise is made from the output

data sequence.



This thesis compares the classical and lattice structures of' the Levinson reCursion

formula given in [Ref. 3: pp. 145-16-1, and examines not only the formulation of the

recursion formulas for these algorithms, but also the complexity of the computations

and the resulting structure of each of the algorithms.

B. THESIS ORGANIZATION

The structure of the thesis is diided into .4 chapters, including the Introduction. In
Chapter 11 we will review the classical Levinson algorithms. In ,he first case, the algo-

rithm is obtained using the autocorrelation function of Le input sequence. and in the
second case, it is obtained using the forward and backward error vectors of the input

sequence. In each case we shall establish the number of real multiplications required to

complete a k-th order recursion of the respective algorithm. As stated, the ultimate goal

is to establish the computational efficiency of the split-Levinson algorithm over the

classical Levinson algorithm. Chapter IM deals with the derivation of the split-Levinson

algorithms preceded by an introductory section on symmetric polynomals. As in Chap-

ter II. both the autocorrelation function ind the lattice algorithms will be developed.

In addition, a comparison between the computational cost of the Levinson and split-

Levinson algorithms and an attempt to define the split lattice structure in terms similar

to the Levinson based lattice are presented.

In the final chapter two practical applications of the split-Levinson algorithm are

investigatel. These are: (1) the MA parameter estimation problem. and (2) the extended

Prony method. In case (I), the Levinson recursion used to determine a predictor coeffi-

cient vector is replaced by the split-Levinson algorithm. A comparison between the test

coefficients and the computed coefciznts is presented. In case (2). an estimation of

sinusoids in white noise is performed. Additionally, overall conclusions of the research

as well as proposed topics for continued thesPk research are presented.



IL. THE CLASSICAL LEVINSON ALGOITIIHMS

The importance oft the Le, inson algortlthm I n iimear prediction tieor,, Is %%eU know\n.
The reason to present the algorithm in its two forms is twofold: I ) to present certain

dcfini1tizns; that will he requ~red later in the de~ e!opment of the sph:-Le\, mrson ahio-
rithnis. and (2) to detail the computational complexity of the Levinson alcmrthm for

comnpari.son purposes to the spla-Le'.inson crsions of the algorithm. In the contex\t of
our discussion within this thesis, we shall confine ourselves to the stud-v of autorezressive

mode.inQ problems of real sequences as in Figurel1. [Ref. 3: p. 1521

w (n) +u (n)

Figure 1. Autoregressive Model.
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We know from linear prediction theon the augmented normal equations given hs.

R a = r,,, (2.11

can optimally be solved by the Levison algorithm. and that this algorithm can be im-

plemented with either the autocorrelation function or the forward and ba.kward pre-

,icion error vectors of the input sequence [Ref. 3: pp. 152-1701.

A. THE LEVINSON ALGORITHM

In order to exanune the computational complexity of the Levinson recursion. it i1

necessary to formulate the recursive aigorithm, and to determine the number of' real

multiplications and additions required to complete the algorithm. First. construct a

Toeplitz natrix from the sequence s(tl, of length N, defined as R. = [R.0 i. j <],

where the elements of the matrix are the autocorrelation lags given by [Ref. 2: p. 6461

I st) qt1 ) (2.2)

then. the predictor vector a can be determined as a solution to the system defined by the

matrix equations

[Rk ][ak] = [a,0,0 .2.-

where or, is the prediction error norm. and is defined as

k

C = RO + ak R,2
zi

It is recalled from linear prediction theory, that given a positive-definite matrix R,

of order k+ 1, the kth order a coefficient vector can be computed recursively from the

nested Toeplitz submatrices, and their respective successive predictor vectors, a. The

well-known Levinson recursion formula is this solution, and has the form

akl ak I + Pkak-l,k i = 0.1.2.k (2.5)

with the conditions that a,.o = 1, and a,-,, = 0. The parameters, p, = aP . are called re-

flection coeflicients, also PARCOR coefficients, because the. represent the partial cor-

4



relation between the zero-th and the k-th element of the prediction vector with the Lflcct

of all the intermediate elements removed.[Ref. 4: p. 53]

To construct the Levinson recursion we must use the prediction error norm re-

lationship

ak= ( 1- p a,_ 2 o

and the identity
k-1

k i p = - R a 2,-)

to define the recursion variables. Consider the following definition as it applies to the

Levinson recursion [Ref. 1: p. 4172].

k-1

A =k - - Rk-ak-lI (2.8)

= Qf:Pk

and solving for p, from Eq.(2.8). we have

tkPk - a _

The error norm a, can be written in terms of the the normalizing term ,. by rewriting

Eq. (2.6). and making a substitution from Eq. (2.9)

2
Ork Pk)(1--

= Gkt - Pk;_k

Combining Eqs. (2.5), (2.8), (2.9), and (2.10), we have the basis for the Levinson alo-

rithm. and it is summarized in Table 2 of Appendix A,

B. LEVINSON LATTICE REALIZATION

If we are given a real sequence of signal values s(0) s( 1) .... s(N- I). and it is known

that st) = o. for -I > t and t > N, then for the linear prediction problem of order k we

find it necessary to find a set of real numbers a,. a, a,, that will minimize the for-

ward and backward prediction errorvectors using a linear combination of the past signal

i.S



vectors. If we call the forward prediction error vectorf() and the backward error vector

bjt). and define them in terms of the a., coefficients. [Ref. 2: p. 6461 we have

1t.. a s(r - i j)2.11I)

k

bint) = :2.,<- s(t - i)

then it turns out that the same real numbers, a,. wili provide the solution to either of

the forward or backward prediction problems. (i.e., minimize the squared Eucltdean

norm of bothf and bj.
Let a, be defined as the squared norm, that is

2 T
k 4 11f.lr r(2.13)

From Eqs. (2.11) and (2.12) forming the first three terms of each error vector we have

the following,

fk(O) = akos(O) + akls(-1) + ... + akks(-k) (2.14)

I (1) =aks(l) 4-aks(O) +aks -) +.... +akksl -k) 12.15)

k(2) = akOs( 2 ) + akls(l) + ak2S(O) + ... + akks(2 - k) (2.16)

and.

bk(O) =akks(O) + akkI s( - ) + ak 2s( - 2 ) + ... + as( -k) (2.17)

bk(l)= aks(l) + akk-ls(O) + akk2s(-I) +...+aks(I -k) (2.18)

bk( 2 ) = akks(2 ) + ak.-_ls(I) + akk 2s(O) + ... + akos(2 - A) (2.19)

_ = • .- r •6



If we examine the elements of these two vectors we can see they are related in that

each can be derived from the other b- reversin2 the order of the a coefficients. If we form

the Euclidean norm of each vector,. 1. and [b.'', we see that the 1,-th predictor vector

[a,-. a ,....ak J]" rrmnimizes the error norm. and '7> = b,2.

From [Ref. 3: pp. 156-157], we can use the Levinson algorithm to define the

recursion formula for the forward and backward prediction errors given by

f:(t) = 4 -1f: ) + Pkb _L>,( ' - 1.
bk) = Pj __ + b._(t - )

If we let the following definition apply to the lattice version of the Levinson algo-

rithm

;_k = 7A-IPk - fk-()bk-l(t) (2.21)
r=1

then using Eqs. (2.9), (2.10), (2.20), and (2.21) we can summarize the Levinson lattice

algorithm in Table 3 of Appendix A.

Even though the lattice algorithm is implemented directly from the data samples, its

computer implementation will be more complex because of the vector manipulations

that must occur in each iteration. The lattice structure defined by Eq. (2.20) is shown in

Figure ?.

In summary, we discussed the Levinson algorithm which uses the autocorrelation

elements in its recursion and the related lattice structure which uses the input data di-

rectly in its formulation. In terms of the computational complexity, both algorithms re-

quire real multiplications of the order ka. as detailed in Tables 2 and 3 of Appendix A.

in order to realize a k order predictor filter.



1.0

Figure 2. Lattice Prediction Error Filter.



111. THE SPLIT-LEVINSON ALGORITHMS

The split-Levinson algorithms are based on the theory of-;ynmetric and antik.'m-

metric polynomials. We know that for an k-th order real autoregressive process. the

normal equations are

Ro  R, R, ... Rk I ey

R, Ro  R, ... Rk._ a1

R) R1  RO ... Rk2 a, 0

(3.1)

Rk Rk_ 1  Rk_2 ... RO  ak 0

or,

Rak = [ar,0,0...O] r  (3.2)

Usin2 the Barlett Bisection Theorem [Ref. 5: pp. 1074-10-61, and because of the svm-

metn. of the autocorrelation matrix, we can say that the predictor coefficient vector is

the linear combination of a symmetric and antisymmetric predictor vector given by

ak = a~s) + a(a)  (33)

The symmetric and antisymmetric vectors are defined as

(a). Bak [B]

where B represents one-half of the vector components of a,, and B' represents the re-

versal of the vector components of B. Using Eqs. (3.3) and (3.4). we can transform the

normal equations into

9



Rail= [o2"o o r

RaT )  [&!-.uLu... -o2-r

Therefore, we can see some favorable consequences of these revised normal

equations, and their solutions. First, either the synmetric or antisvmmetric form will

cive the same solution, and second, because of the symmetry of the predictor vectors.

we need only solve for one-half of the predictor coefficients.

Similar to the Levinson algorithm we now proceed to develop the split-Levinson

algorithms from the input sequence autocorrelation function and the predictor error

vectors.

A. SPLIT-LEVINSON ALGORITHM

The predictor polynomial ak(z) is defined as

k

ak(z) = 'akZ -i  (3.6)
i=0)

relative to the given Toeplitz matrix of autocorrelation lags. Denote the reverse of our

predictor polynomial as a(z) = z-'a,(z-), and the predictor polynomial has been shown

to obey the recursion [Ref. 3: pp. 156-157]

ak(Z) = ak_, (z) + pkz a(z) (3.7)

and the reverse polynomial of Eq. (3.7) is

ak(z) = z ak- I (Z) + Pkak..I (Z) (3.8)

We now want to form a new polynomial from the given predictor polynomial that

will form the basis of the split-Levinson algorithm. It is desired to show that the deter-

rination of the coefficients of this polynomial will allow us to recover the original pre-

dictor polynomial, and at the same time be more computationally efficient. We define

the symnetric polynomial as P,(z), and the antisymmetric polynomial as PI(z) , and we

desire them to be of the form [Ref. 1: p. 472]

10



P'>):) = : -

Recall from Eq. (3.4 and (3.5) that the symmetric and antisy mmetric predictor coeffi-

cients are composed of two vectors that are reverses of each other. and we will define

these vectors so that they obey the relationships

Pk, (3.1

Consider the mathematical interpretation of making the autocorrelation matrix. R,

a singular matrix. If the reflection coeflicient p, is made + 1, then this corresponds to

an element of R, making the matrix singular. For this reason we shall designate the

symmetric and antis nmrnetric predictor polynomial% as singular predictor polynornials

[Ref. 2: p. 4721 and from Eq. (3.9) they are defined as

Pk(z) =ak-.(4) + zak-(z)

P<S"-) = ak_(z) - z "ak l(:)

Also, these singular predictor polynomials are self-reciprocal [Ref. 2: p. 4721 because of

their symmetry and may be expressed in the following forms

Pk(z) = z-kPk(z- )
pla) = _ zrkp(Z 1) (3.12)

From Eq. (3.11)we have

2 ak-I(Z) = Pk(Z) - ak-l(Z)
= ak_1(z) - P "(") (313)

If we add Eqs. (3.7) and (3.8), and make a substitution from Eq. (3.13) we have

ak(z) + ak(Z) = zak l(Z) + pkak-dz) + a)(z) + (z)

(1 + pk)ak-)(z) + ( + Pk)Z akl(z) (3.14)

=l.kPk(: )



where we have defined ;, as

-= + P; (3.15

In a similar fashion we can solve for the antisymrmetric normalized singular predictor

polynomial by subtracting Eqs. (3.7) and 3.S), and substituting from Eq. (3.13) we have
( a } W

(1(:) - ak(:) = Pk Pk (-, (3.16)

where

(a) (3.1?)
"k OPk

Similar to the predictor polynomial a,(z), we can define the singular predictor coef-

ficient vectors for Eq. (3.9) as [Ref. 2 : p. 4721

Pi [Pko, Pk . Pkk]T
p pZ (a.](a ) (a)-T (3.18)

Pk "'" k , Pkk J

Since we want the split-Levinson normal equations to be of the form

Rkak =[ k,O,O - (r (3.19)

Rkak = [0,0.. ak] (3.20)

then from Eq. (3.14) and (3.16) the singular predictor polynomials are

ak(z) ak(Z)
Pk(z) = - + -

Pk(z) a(:) ak(Z) (3.21)
k ;(a) - _ -a)

Ak 1k

Since a,(z) is a polynomial formed from the predictor coefficient vector that is a solution

to Eq. (2.3), it follows that P,(z) and P1°0(z) are solutions to the Toeplitz system described

by Eqs. (3.19) and (3.20). [Ref. 1: p. 4721

12



RPk =Rak - k1

A A

R pk  = R "- -

Normalizing Eqs. (3.19) and (3.20) by ., and ,;. the split- Levinson normal equations in

matrix form are expressed as

Rpk = [rk.O. 0  IT k] r
r)ij

R()= -p2)00. -C' ]Gfl T32

where we have defined the modified prediction error norm [Ref. 2: p. 6511

(7k
1-k - /-
_(a 17k  (3.24)

'k - :),(!
Ak

If we expand the matrix expressions in Eq. (3.23). the modified error norms may be ex-

pressed as finite sums of the predictor coefficients

k

Trk = Rj Pki

k (3.25)
(~a ) Rip(')

i=O

where R, is the i-th autocorrelation element of the k-th sub matrix.

Since the symmetric and antisymmetric polynomials are closely related. we shall

derive only the symmetric polynomial recursion equations, and then simply present the

results for the antisymmetric case.

The final step in the derivation is to derive a three term recursion formula for the

symmnetric polynomial. From Eq. (3.11) and (3.14) we have the surprising result that the

predictor polynomial a,(:) can be obtained from a linear combination of successive sin-

gular predictor polynomials [Ref. 2 p. 4721. First, form P,.(z) from Eq. (3.11), and then

eliminate a(:) using Eq. (3.14)

13



Pp.,l(z) = ak(z) + z ,,(z)

= a,z( + z- [/ P; :t - ak)z]

-1 - z)alk(:) + :- ;'Pk(:)

(1 - z- )k(Z) = Pk,l:) - z§ I- ,K(:)

If we replace k by k-I in Eq. (3.26) above we also have

(I - _-_)ak-I(Z) = Pk(:) - Z- 1kI Pk_((3.2-

We now form our recursion tbrmula by mutiplying Eq. (3.11) by (I - z-), and use Eqt.

13.). (3.26 . and (3.27) to elimirnate p. and all a, predictor polynomuals.

(l-'-)ak(Z) = l- )clk-1(:) +pNO- Z) k I (Z)

= (I - z-)a_;(z) + pjkl - z- )[Pk(z) - ak-I(Z)]

(1- z )ak.(:) + pk[Pk(z) - akt(z) - z-Pk(Z) -'- z'ak.,(:)] (3.28)

= ak-l(z)[l -z - Pk + Z-IPk]

= k-,(Z)[ I - z- )(I - Pk)]

If we now substitute for (I -'z-I)a,(z-), (1 - z-)a,(z-') from Eqs. (3.27) and (3.28). and

eliminate p, using Eq. (3.15), we can complete the derivation
P -z-;'.k z) = [Pk(:) - z- 1 ,k -(z)](2 - 'k) + ['kPk(z) - Pk(z)](I - z-

2Pk(z) - k()Pk(Z) 2Z-I 2§A Pk-I(Z) + z - k . (zJ

-1+ 'kpk(Z) - PJZ) Z C 'Pk(Z) 4+ _A-' 1) 3.29)

Pk+I(z) = (1 - Z_ I)Pk(z) + Z - 'k-lpk-lYL'Ik - 2]
=(I + Z-1)Pk(z) - akZ IPk_(Z)

Taking the inverse Z transform of Eq. (3.29), we have the three term recursion formula

for the singular predictor coefficients

PkI = PkI + Pk c-i - -(kPk- I k-i (3. 3)

where the recursion parameter a, is defined as

0(k = ;lk1[ 2 - ;k] (3.31)

We note that T, is determined from P,(z) from Eq. (3.23), and therefore we conclude that

the singular predictor polynomials can be recursivciy computed from Eq. (3.30). How-

14



ever, the recursion parameter a, is not quite in the correct form. From Eqs. i2.1 u,
(3.15), and (3.31) we can alternatively compute ac from [Ref. 2: p. 473

Ot= k3.32)

The dual relationships for the antisyrnmetric split-Levinson formulas can be derived

by following a procedure sinmilar to the one presented above. It suffices to replace the

quantities ,, ra p,. by their antisymnmetric duals, i.e.. pi,, and use the following anti-

symmetric initial conditions. [Ref. 2: p. 6491

A1 ; 1
r (3.33)
P" =-0

Recursive equations for the symmetric split-Levinson algorithm are summarized in

Table 4 of Appendix A. Examining the entries in Tabl, 4, we see that a full iteration
loop of the algorithm requires approximately t real multiplications. However, because

of the symmetry of the singular predictor coefficients, we only have to perform one-half
of these calculations. Therefore, for a k-th order filter we need to make on the order of

A 2 real multiplications. The 6 function in Table 4 is used to distinguish betweer even

and odd orders of the indexing variable.

The FORTRA-N program SPLIT, in Appendix B, estimates the predictor coefficients

using the Levinson and split-Levinson algorithms. Figure 3 is a graphical comparison

between the known test filter coefficients of SPLIT, shown by the solid curve, and the

filter coefficients computed by the Levinson and split-Levinson algorithms, shown by the

dashed curve. We now undertake the derivation of the lattice form of the split-Levinson

fbrmulas to verify the numerical complexity of that method, and to investigate the

symmetric and antisymmetric lattice structures compared to the Levinson lattice forms.

B. SPLIT LATTICE ALGORITHM

We begin the split lattice derivation by introducing the symmetric and antisymmetric

error vectors x,. xr) [Ref. 2: p. 6481. If we use previously established singularity concepts,

and substitute + I for p, in Eq. (2.20) for the symmetric and antisymmetric error vectors,

x, and x °, respectively, we have

15
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kt) = fk_ (t) +i bk_,(t - 1)(33)
Xk ([t) = fk- I(t) - bj,_I(I - 1)

As in the sphit-Levinson case, we shall proced with the deri~ation of the synu-netric

split lattice, and present the antisynimetric lattice results at the end of the derivation

with an%- significant changzes noted.
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If we extend the singular polynomial concept to the singular predictor coe,'ficients.
we can start with the Levinson coefficient recursion formula and substitute - I for j).

d~1k: = c,,_. :.+ 4-pk'1: . k-i 3.5

and substituting for ,

P;= k i a . ( 3.3 61

If we write Eq. (3.34) representing the time index (t) with the subscript (i) we have an

algorithm that is more easily adapted for computers.

xki =Jk-,ij + bk-.-, (13.37)

Now, comparing Eqs. (3.36) and (3.37) we have a direct correlation between the two,

and from the split-Levinson equation for the forward error vector, we can write the dual

split lattice equation for x,(t)

k

Xk() Pks(t -i) (3.38)

Since Eq. (3.S is in the form of a convolution sum we can apply Z transform theory

to see if any inferences can be made

Xk(z) = Pk())S(z)

S != Pk(:)

From Eq. (3.39) we can conclude that the symmetric polynomial constitutes the Z

transform of the transfer function formed from the error vector and input sequence z

polynomials. Now we can use the previously derived split-Levinson algorithm, and in-

verse transform it to obtain the lattice error vector recursion algorithm.

Repeating the split-Levinson rC.ursun we have

Pk+Il() = (1 + Z')Pk(z) - Otkz-PklIZ)

Pk(z) + ZP 0Z) - =kZ P,-(z)

Multiplying Eq. (3.40) by S(z) and using Eq. (3.39) for P,(z)S(z) we have

17



S(z)Pk+ t() = S(:)[PK(:) + z 1 Pk(Z) - akPk 1_:)](

,Xk+I:) = ,T,(:) - A z, VX(z) - :kzA\-(-)

Applying the inverse Z transform to each side of Eq. (3.41) we have the singular pre-

dictor error vector recursion formula [Ref 2: p. 6501

-Xk-1-[1 ) = x:(/I + :-IX'7t) - Yk:-1Xk-:) (3.42)

The svunetric lattice structure given by Eq. (3.42) is shown by Figure 4. [Ref. 2:

p. 6501

From Eq. (3.32) we know that the recursion parameter oc, is defined as rk/r,_, and

since Y. appears in the recursion formula for the singular error vector, we need to solve

for it. We be2in with the Levinson error norm equation

=k (1 2= _= Pk)akI
2ak = 2ak-(l + Pk)Ol -P k)

2 7k = Pk) (3.43)
1P+k

2Ck-!(l - Pk) = 2rk

where we have substituted r from Eq. (3.32), and 2a,_ (l - PA) 1s defined as Ixki [Ref.

2: p. 650].

The initial conditions for Eq. (3.42) must be examined because most cases are trivial

except for the case of k 0 0. From Eq. (3.38) we have

Xo(t) = pooS(r), (3.44)

and from [Ref. 2: p. 6481 we define p., = 2.

The antisymmetric duals are very similar to the symmetric case, and can be formed

by replacing the symmetric variable by its antisymmetric counterpart, i.e., x°'(t) for

x(t), - p, for p., etc. The initial conditions for the antisymmetric case are given below

(a)
XC (0 = 0

Xk W= s() - s(- I)

The antisymmetric lattice structure given by the antisymmetric dual of Eq. (3.42) is

shown in Figure 5. The split-Levinson lattice formulas given by Eqs. (3.37), (3.43), and

(3.4-1) are summarized in Table 5 of Appendix A. If we examine the number of real

18
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multiplications given in Table 4 and Table 5, then we can deduce the following conclu-
sions. The split versions of the Levinson algorithm do produce a reduction in the com-
plexity of the calculations when compared to the classical versions. The split-Levinson

produces a reduction of one-half, and the Lexinson produces a reduction of 3 2 [Ref. 2:
p. 6-451. The FORTRAN program SLATIS. Appendix C, implements the Levinson and
split-Levrison lattice algorithms, and a graphical comparison between the known test

coefflicients, shown by the solid curve, the coefficients estimated by the Levinson lattice
algorithm. shown by tile dashed curve, and the coefficients estimated by the symmetric

split-Levinson algorithm. shown by the dotted curve, is presented in Figure 6.

The split lattice structures shown in Figure 4 on page 19, and in Figure 5 on page
20 show that the classical lattice structure appears to be lost in the new algorithm. The
distinct advantage of the original lattice structure is the modularity of the filter. In order

to retrieve this appealing feature of the lattice filter we shall now proceed to derive a

revised version of the split lattice structure, and see if it can have a form similar to the

classical structure.

C. SPLIT LATTICE REVISED STRUCTURE

To begin, consider the second order classical lattice structure derived from

Figure 2 on page 8. We can write the following equations for the first and second stage
forward and backward prediction errors,

fl(n) = s(n) + p1s(n - I)
gl(n) = ps(n) + s(n - 1)
f,(n) =f,(n) + p2g,(n- 1) (3.46)
g,(n) = pjf1(n) + gI(n- 1)

Now substituting the equations forf(n) and for g,(n) into the equations forfL(n) and

g(n). solving for the second stage forward and backward prediction filter errors and
taking the Z transforms yields the transfer functions

F(z) 1 + z-(p + PIP2) + P2z-2 (3.47)
S(z)

and.

G2(z) z-1 -2S(z) "= 2 ± (PI + PIP2) + z (3.48)
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which obviously yield the second order predictor transfer function A2(,) and its rcvcrse

version .,(z), where a20 = 1, a2 = p. a., = pi - PP2 2p-(1 - p2). Now forming the third

order symmetric polynomial P3(z) from our second ordcr example, we have [Ref. 1: p.

4721

P3(z) = A 2(z) + Z-3- 2(Z-)

= ao + (a, + a2)z - 1 + (a, + a2 )z- l + a0
z - (

12i



Ifwe define a, = 1. and ica, + a.) = p. then

P3(: = I '- p: - p -+ P -

I I (x-" t -)
=l-p - -t: -I- .-

Define the following terms:

F(z) = I -pz(.1

therefrre,

P3(:)= Fj(z. + z- 2G1 (:) (3.52)

Equation (3.52) defines the revised symmetric split-lattice structure, and Figure 7 gives

a graphical representation of that structure.

F (z)

11

x (k) K1 X so~z

-1; 1-(

Figure 7. Proposed Split Lattice Configuration

In order to show that the preceding classical structure can be equated with the

symmetric polynomial derived earlier, it is now necessary to form the forward and

backward prediction error transfer junction of the new split lattice structure and com-

pare them to the Z transform of the symmetric polynomial. Therefore, from Figure 7

and Eq. (3.52), we can write P3(z) as

P3(:) = I 4- Kjz I + z-2(K, + z -') (3.53)
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Now, if we compare Eq. (3.50) to Eq.(3.53), we see that K, = p. But, from Eq. (3.49)
we know that p, = (a, + a,), and substituting for a, and a2 from Eq. i 3.4S) and (3.49)

yields

K, = r =p, + P2(
1 -P 1 ) (3.54)

Let us now rederive the symmetric polynomial from the revised split lattice structure.

From Eq. (3.50) and (3.54) we have

P3(z) = 1 + (p1 - P2 - pIp2)z - I + z 2(PI - P2 - PIP 2) +
-  (3.55)

Since we have found that the symmetric lattice can be restructured to a form similar
to the classical lattice, the next logical step is to find a recurrence relation for the new
lattice. Let us consider a 5:, order symmetric polynomial to determine the step-down

recursion procedure, given by

P5(z) = 1 + p51z - I + P52z-2 + P52Z- 3 + P51Z --4 + Z-  (3.56)

From Eq. (3.51) we have

F2(z) = I + psjz-I + P52z - 2

,(z) = -2+ P51z - 1 + P52

As per the observations made in Figure 7 on page 23 and Eq. (3.51), we have the lattice

reflection coefficient for the second stage, K, = P2. Now reduce the order of F(.,- to find
the first stage reflection coefficient using the standard inverse Levinson recursion [Ref.
4: pp. 156-157].

F2(z) - KG 2(Z)
F1(z) 1 - K (3.58)

+ P51 -1
I1+ + K, z

therefore

Ps1 (359)
K1 - 1 + K2

Now rewriting the equations for F(z) and FA(z) using the derived reflection coefficients.

we have

24



Ft)= 1 + Kz1:

O !z) = z- + K,

F:) = I + Kji( + K2)z - K 2 (- .

G4:) = -2 + K,(I -+- K,)z-l + K,

and we know that

P5 :) = F,(:) + z 3G-(z)
= I -, KI(I + K,)z -  + Kz - 2 + K z - 3  1.1

+ KI ( K2)z ' + z -5

Equating the terms in Eq. (3.56) and (3.61), we have p,, =K (1 + K,) and p2= K,.

Knowing the values of K, and K. we now can form a two stage symetric lattice similar

to that in Figure 7 on page 23 to implement P,(z) . However, we are interested to find

if we can recursively obtain the lower orders P,(:), P,(z), etc. or the higher orders

P,):). P-(: . etc. from P, (z. In an attempt to form Pz), we use the standard forward

recursion [Ref. 3: pp. 156-15-1 to obtain

F3 (z) = F,(z) + K3z G,(z)

-1 + Kj1 I + K.)z - + Kz - 2 + KK 3 Z (3.62)

±K.Kj 1+ KI)z 2 + K3z
3

and

G3(z) - z-
3 + KI(I -t- K)z

- 2

+ K2z
- 1 + K2K3

z- 2  (3.63)

+ KK 3(1 + K2)z- l + K3

Forming the symmetric polynomial P6(z) from Eqs. (3.62) and (3.63) we have

P,(z) = F3(z) + z-3 G3(z)

= I + (K, + KK 2 + K2K3)z

+ (K2 + 1K3 + K1K2K3)
-2 + K3z 3  (3.64)

+ K3z
- 3 + (K2 + KK 3 + KK 2K3)z

''4

+ (K + KIK 2 + K2K3)z - + z-6

Comparing Eq. (3.64) to the symmetric form of P6(:), we have
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p6 = (K + KK2 K3)
_ Pt P + Ps2+ Zp.63 l3.65)

1 +P52 1 tP2

The one-half enters into Eq. (3.65) because we know that for even orders the polynomial

coefficients are svnimetric about the center element, and they must be shared in the

matrix equations. We shall now expand Eq. (3.65) to attempt to develop a recursive
algorithm for the sixth order coefflicients from the fifth order coefficients. Expanding Eq.

(3.65) wc have

(1 +P52)P61 - Psi + PSIP52 + ( 2 EP52 + P52 - O(5P42] (3.661)

where the term in brackets is an expansion of the coefficient recursion formula, Eq.

(3.30), for p6. Collecting terms we have

( + P52)P61 - PsI(l + P52) - (0 + P52) 2 P52[PS2 + P52 - sP42] (
P6"aP A sl- " 12 (3.67)

P61 =Ps' t s[':-T '-

Substituting for P,2 from Eq. (3.30)

P52 = P42 + P41 - eaP31 (3.6S)

From Eq. (3.68) we can observe that the ot recursion parameter and the number

of previous coefficients required to be known are increasing in order, and it appears that

a simple recursive algorithm based on the above approach is not possible. Note that
although the new lattice structure does not appear to be order recursive, we can express

a given order symmetric or antisymmetric lattice structure in a more conventional form.
In summary, we know that the split-Levinson algorithm is a viable replacement for

the classical algorithm because of its computational efficiency. We have studied both

autocorrelation and data (or lattice) realizations of the split-Levinson algorithm. An at-
tempt to derive a recursive split lattice algorithm yielded a classical-like lattice structure,

but it is not recursive in order. Further investigation is necessary in this direction. We

now need to test the split-Levinson algorithms on some signal processing applications.
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IV. APPLICATIONS OF THE SPLIT-LEVINSON ALGORITHM

In this chapter, we apply the split-Levinson algorithm in (1) the MA parameter es-

timation problem. and (2) the extended Prony method of spectral line estimation. Before

we take up these two applications we examine the algorithms usefulness if the original

filter has coefflicient sy:. metry. i.e., the impulse response of a linear phase FI R flilter.

A. HANKEL AND TOEPLITZ MATRICES

In previous derivations we have assumed the FIR filter equation to be non-

symmetric. Let us now investigate the problem where the filter equation is symmetric.

i.e., of the form

y(n) = s(n) + as(n - 1) + a2s(n - 2) +

+ ak,,s(1) + aks(n - k) (4.1)

Bv definition, a symmetric polynomial is self-reciprocal. that is

ak(2) = (tZ) = Z-k ak(,z- i) -

Therefore, from the Levinson algorithm, predictor polynomials are known to obey the

recurrence relation

ak(:) = ak_.I.(z) + pkz -Ik (Z) c4.3)

and in our special case we have

ak(Z) = ak,() + PkZ -k_ 1(z) = az)

- (1 + pkz- akl(Z)

In order to formulate a set of equations similar to the split-Levinson. it is necessary

to derive the normal equations for our special case, and compare them to the standard

equations, in order to develop the recursive algorithms. Since the predictor coefficients

in a recursive algorithm produce estimates of s(n) as the algorithm steps through its re-

cursive steps, denote this estimate as i(n). In vector form, we then have
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a,

a3

s(nln- 1)= -[s(n - 1) s(n -2)... s(O)] ... (4.51

a2

a1

To derive the normal equations we must find the minimum mean squared error (%ISE)

from the equation for the error,

e(n) = s(n) - s(nln - 1) (4.6)

The minimum mean squared error is found by squaring the error term, and then differ-

entiating the squared term with respect to the given a, vector. Combining these two ev-

olutions we have the following equations,

A[SE = J

= Ele 2(n)] (4.)

= E[(s(n) - (si(n)In - 1))2]

To obtain the normal equations, we carr- out the following steps:

?J= 0 = -2EEs(n)s[ i] -2ETsrTl sk.i]

E[s(k)sk.ls[ I]a = ETS(n)Sk..l] (4.81

R(k-)a = rk - )

From the split-Levinson recursion formulas we know that the singular symmetric

polynomial, P,(z), is defined as the following.

Pk(z) = akl(z) + Z ak I(z) (4.9)

Since our predictor polynomial is symmetric, it is a reasonable question to ask if sym-

metric polynomials also obey this recursive relationship. It is noted as an immediate

consequence of the recursive problem, all of the preceding polynomials will also be

symmetric. Therefore, we check the singular predictor polynomial recursion to see if it

holds when the original polynomial is itself symmetric
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-- 1^

ak(z) = ak..(z) + z a -,(z)

= ak...l(z) + z-z -ka (),(Z)
+ + a lz - I + a 2 .:- 2  + .. + 4 k - k + a z- 1 - + 

- 4 
- Z

. . +

= + (I + al). - I + (a1  a,)z - 2 + ... +

Now that we see that the Levinson recursive equation holds for a symmetric

polynomial, we derive the recursive relationships for our polynomial using what is

known from the split-Levinson equations. We have defined the symmetric polynomial

P,(:) to be a normalized combination of a non svnunetric pol.nondal, a,(z), and its re-

ciprocal image. a,(Z) in the form of,

.kPk(z) = ak(z) + ak(z) (4.11)

By direct substitution it is a trivial matter to show that this relationship also holds for

a symmetric polynomial, ajz).

In order to develop the recursion for the symmetric polynomial, it is necessary to

express the desired linear predictor in terms of the previous two predictors. To this end

use Eq. (4. 10). to form a,.1(z), and substitute from Eq. (4.11) to perform this task.

ak(z) = ak-I(z) + Z ak_,(z)

ak+I(z) = ak(z) + Z ak(z)

= ak(Z) + Z-[.ak(z) - ak ()]

= ak(z)(l - z - 1) + z-1 ,.kak(.)

Solving for (1 - z-')a,(z), and forming the quantity (I - z-')a,_,(z) we have

(1 - z-')ak(z) = ak+I(:) - ZA;.kak(Z)

(I - z')ak-i(z) = ak(Z) - z-;.k-IC-I(Z) (413)

These relationships will now allow us to form the three term recursion for the given

symmetric polynomial from Eqs. (4.3), (4.11), (4.12), and (4.13)

ak(z) = ak_ I.(z) + Pkak-I()

ak+ (z) = (I + z- )ak(z) - akz- ak_.(z)

where we have defined a,

ak = ;.k-l( 2 - A-k) (4.15)
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From Eq. (4.14) we can see that the coefficient recursion formula is the same form

as Eq. (3.29), and we can deduce that the split-Levinson algorithms will work equally

well for symmetric polynomials that describe unknown filters as it does for polynonuals

that are not symmetric.

B. FIR MOVING AVERAGE PARAMETER ESTIMATION
If we consider an FIR filter with an input sequence given by

sr = [s(n)sin - 1)...s(n - in)], and an output y(n) given by

If

y(n) = Lai s(n - i) (4.16)
,=O

then we can develop the necessary equations to estimate the moving average parameters.

and solve for the FIR filter coefficients. The algorithm to estimate the predictor coeffi-

cients can be defined as follows:

Let the three predictions. p'-(n), k-(n), and i,'(n), represent the m-th order predictions

of the forward estimate of y, the forward estimate of s, and the backward estimate of s

respectively. [Ref. 6: p. 1 

m

-y7(n) = bi - ) 4.1 i-
i--0

m

s(n) = ci s(ni) 4.IS)
1=0

sb (n - m) =Zd, s(n - m +i), (4. 19)
i-=0

where the coefficient vectors are defined as.

Tb =  I - b0 - b ... bm]
Tc = [0 1 - c, ..-cM] (4.20)

Td = [0 - Cm, - C_ .,. - C, ]

Without going through all the details for the MA parmeter recursions, we can

summarize the recursion formulas for the predictor coefficients as [Ref. 6: p. 21
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b m b-)
= + K'7(d m)

C (c"0-7 + d. 42

Notice that the predictor vector d- is not included in the preceding definitions since it is

the reverse c-

If we examine Eq. (4.21) we see that the recursive relationship for c- is a statement

ot the Levinson recursion, since K,, and K., are the m-th order reflection coefficients.

Therefore. we can apply the split-Levinson algorithm to solve for c', form d'" .and

recursivelv determine b. Finally. from the theory of Moving Average processes. b- = a-

The FORTRAN program NIAVI. in Appendix D, uses a 25-th order FIR test filter

to to generate a test sequence. and the results are given in Table 6 of Appendix A.

Figure S is a graphical comparison between the known test coefficients, shown by

the solid curve, and the computed filter coefficients, shown by the dashed curve. The

curves are fitted to the linear magnitudes of the coefficients by interpolating spline

techniques.

C. EXTENDED PRONY METHOD

The estimation of the existence of sinusoids in the presence of noise is a common

occurrence in signal processing applications. In this simulation, we will show that the

spiit-Levinson algorithm can be directly implemented in the process to determine the

approximate frequencies. The noise is zero mean, unit variance, and white in nature.

In this application of the split-Levinson algorithm, we attempt to approximately fit

p exponentials to a data set of N samples. We have the constraint that .V> 2p, and a

least squares estimation procedure is used. We begin by defining the estimate of our set

of data samples. [Ref. 7: p. 14041

P

x bz n=O. -1 (4.22)
Lr m m
m=1

where b, = A, expUO.)/2, and z, = expU2lrf.At). The z, 's are roots of uni* modulus with

arbitrary frequency and occur in complex conjugate pairs as long as f, : 0 or l/2At

Therefore, in order to solve for the p sinusoids, we must solve for the roots of the fol-

lowing polynonial. [Ref. 7: p. 14061

31



C' / \

/ \
/ '

/ .
~/

2P-- /\

/

C- /
/ •

0 1 2 3 41 5 67 ( 9101112131.1151617181,2(Q212Z23,24

COEFFICIENT NX"UMBER

Figure 8. ,MA Coefficient Comparison.

) --- akz - 0 (4.23)

The roots can be of unit modulus, and occur in complex conjugate conjugate pairs if

we constrain the polynomial cocfficients to be symmetric about the center element of the

polynorral [Ref. 7: p. 1407]. This is an exact ocurrence in the smvnmetric and anti sym-

metric polynomials of the split-Levinson algorithm. as long as the order of the

polynomial is even, that is

aT a ... a_ a4- (4.24)
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Note that the last element of the coefflicient vector is a. 2 rather than a. because of the

symmetry of the polynomial, and that synmetric polynomials only guarantee that if a

root - occurs, then so does its reciprocal : - 1 [Ref. 7: p. l-40".

The program EPRONYl. Appendix E. utilizes the split-Levinson algorithm to ap-

proximate the p order sinusoids to the given data set. A summary of the simulation cases
studied are presented in Table 1, and the graphical results follow.

Table 1. SUMMARY OF TEST CASES
CaseNumber Constants Variables

Npts
T-st frequencies SNR(-10, 0, 10 dB)

Test frequencies
f" NPTS
Js

SNR

Test frequcncies

fS Filter Order
SNR
Npts

Test frequencies
f

SNp ~SNR (-10,0.10 dB)

SNR
Filter Order

1. Simulation Parameter Definitions
All simulation cases are done in the presence of white noise, and a minimum

possible separation frequency for the input sinusoids was determined. All plots are

sinusoid magnitude, in a linear scale, versus digital radian frequency, 0 for 0 < 6 < 7r.

2. Simulation Results
We begin the spectral line estimation simulations with all parameters fixed, and

then selectively choose a parameter to vary and observe the effects of these changing

parameters. We begin with two sinusoids of f = 50 Hz, f, = 75 Hz, which yield

0, = 1.396 radians, and 02 = 2.0944 radians, respectively. The number of data points
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(NPTS) is set at 1500, and the filter order (M) is chosen to be 4 indicating the presence

of two sinusoids. Now, we chose to vary the signal-to-noise ratio (SNR) for 10 dB. 0 dB.

and -10 dB, shown in Figure 9.

Figures 9 (a) and 9 (b) show that lowering the SNR from 10 dB, Figure 9 (a),

to 0 dB. Figure 9 (b), causes the estimation to worsen, and both indicate low frequency

estimation error. From both of these cases we can deduce the presence of two sinusoids,
but in Figure 9 (c) it appears that only one sinusoid is present, and the low S\R has

caused spectral estimation to fail. The conclusion for the first case is that, the better the

SNR. the better the spectral estimate.

For the second case we selected NPTS as the variable parameter, held the filter

order and sinusoid frequencies constant as before, and set the SNR at 0 dB. From Fig-

ures 10(a), (b), and (c) we clearly see that the better estimation occurs with NPTS -

1000. Figure 10(b), because of the equal amplitude and accurate frequency estimation

as compared to Figures 10 (a) and 10 (c). All plots show low frequency error, but also

suggests that simulations should be conducted with NPTS set to 1000-1500 points for

the best results. This case provides the rationale for the value of NPTS for all other

simulations.

In the third simulation all parameters are fixed as in the second case, and NI is

varied for 4,S. and 10. From Figures ll(a), (b), and (c) we can see that although there

are only two sinusoids present, the estimation plots show M 2 sinusoids for all values

of filter order. Each plot has frequency components in the vicinity of the actual fre-

quencies, but they also give false indications of spectral lines. If we were making a deci-

sion on the number of frequencies based on the magnitude plots of Figures 11(b) and

(c), then signifigant errors would be introduced. In this case it is obvious that unless the

exact number of sinusoids present is known, then the estimation technique will fail.

In the final simulation we introduce two additional sinusoids, and examine the

effects of SNR on spectral line estimation. The constants for this case are f = 35 Hz.

f2 =S5 Hz, f3=105 Hz, f4 = 175 Hz, NPTS = 1500, M = 4, and f= 525 Hz. Digital

frequencies are 0.419, 1.010, 1.496, and 2.094 radians per second respectively. As in case

1, SNR takes on the values of 10 dB, 0 dB, and -10 dB. In Figure 12(a), where the SNR

is 10 dB, we get good results with near uniform amplitude estimation, and digital fre-

quencies that are close for all frequencies. However, from Figures 12 (b) and 12 (c), we

can see that the spectral line forf is missing, and an errant line appears at approximately

2.8 radians. Both of the figures show unequal amplitude indications, but 3 of the 4
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spectral lines are in close proxinut, to their actual values. From this case we draw the

conclusion that the spectral line estimation performance deteriorates at low SNRs.
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Figure 10. Spectral Estimation: Filter Order =4: SNR =0 dB, Data Record

Lengths: (a) 500), (b) 1000, (c) 3000).
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Since the overall purpose of the simulation was to test the applicability of the
split-Levinson algorithm to the test cases, then it has been shown that the split-Lexinson

will produce estimates for the respective cases. However, if we examine the accuracy of

the low signal-to-noise ratio cases, we see that the new algorithm suffers a similar fate

as the classical case in that it is difficult to accurately estimate the correct sinusoidal

frequencies in the presence of noise.

D. CONCLUSIONS

The split-Levinson algorithm has been shown to be computationally more efficient
than its classical counterpart. We can say that the application of the split-Levinson al-

gorithms to practical applications in lieu of the Levinson algorithm can be advanta-
geous. and the computational cost can be reduced significantly for large order systems.

Additionally, the split-Levinson algorithms are applicable to problems where we want

to model MA parameters, and perform spectral estimation using the Prony method.
We note the following restrictive areas for the new algorithm that could make it

unsuitable for certain signal processing applications.

1. Non-recursive split-lattice algorithm.

2. Computational accuracy degradation when performing spectral estimation in low
signal-to-noise cases.

. Complexity of synmmetric and antisymmetric lattice structures.

Since we have shown that the split-Levinson algorithm is a viable substitute for the

Levinson recursion, it is reasonable to consider areas of this topic for further research.

We know that the symmetric lattice structure can be expressed in a classical form for

given filter orders, however, a recursive algorithm for this new structure has been elusive.

We propose that the existing recursive algorithm for the singular predictor coefficients
should be studied to see if a redefinition of equation parameters can extract a new re-

cursive algorithm for the new symmetric lattice. Additionally. the algorithm's poor per-

formance in low signal-to-noise ratio test cases of the extended Prony method is similar

to the performance of the classical algorithm. Therefore, techniques to improve the

classical algorithm's performance, as detailed in [Refs. 8,9], may be investigated for ad-

aptation to the split-Levinson algorithm.
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APPFNnVX A. TABULAR SUMMARY OF -. GORYTHMNS

The tables given in this Appendix were taken f-om [Ref. 2: pp, 64 8 -6 74 1, and are

presented for the convenience of the reader.

Table 2. THE LEVINSON ALGORITHM
Computation Add M ult

a,,, = I. Co = Co

For k= 1.2.n
k-1

=- kak' k-I k-I
1=0

ako = , Pk = k/k-i I

'7k k -I -kPk 1

akJ = ak-l i + pkak_.1k_ k-I k-I

(i = 1,2 ...... k- 1)
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Table 3. THE LEVINSON LAT"TICE ALCORITIHM_

Computation Add Niult

r(t) = = s(t) (0 _ r s .\'- 1)

= 7 s(t)" N-I N

For k 1,2. n,
V,-,k-2

= - I fk-t(.bk-IIt - 1) N+k-3 N+k-2

Pk = ;k/i7k-1

Ck = 4k-t - ",kPk 1

+t) pkbktt -I N+-2 N+k-I

bk(t) =p.k_,(t) + bk_,.(t) N+k-2 N+k-I

(t=0,1 ...... N +k-I)

Table 4. THE SPLIT-LEVINSON ALGORITHM

Computation Add M ult

P., = 2. P.0 = P,., = 1. T, = R = 0
For k= 1,2,....n

k + I = 2t-6,

with 6 = 0 or I

k= (Ri + Rk-I)Pk' + 3 CtPkjt t 3
1=0

Pk,o = 1, ak = k/Tk_ t

Pk = I-- k/(l + Pk-1) 2 1

Pkt(.1~ Pkdi +  Pk,!- I -- O'kPk-1, 1-t 12tt-

(i = 1,2,.,t)
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Table 5. THE SPLIT LATTICE ALGORITHM

Computation Add M ult

x,i) = 2sW, (o: .5 - i)

xoct =s(t)+st- 1) )-<.) N-I

V-1

Po=0 , r = s(t)- N-I N
1=0

For k= 1.2,....n
V+k-I

-rk 7 xk(t)
2

-I N+k

Otk = rki-'k-I

Pk = 1 - Ykl(l + Pk-) 2

-.rk+ I(r) = Xk(t) +Xk(t - 1 ) - a k 1(t) 2(\'+ k-l1) N+ k-I

(t=O. +k)
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Table 6. MOVING AVERAGE TEST RESULTS
Synmmetric

Coefficient Test Splieti
Index Coefficients spht- Lo inson

Coefficients
0 0.1 u.21
1 0.2 0.12
20.3 (3.22
3 0.4 0.32
-; 0.5 0.42

0.6 0.52
6 0.7 0.61

0.3 (). 71
8 (.9 O.S1
9 1.0 0.91
10 1.1 1.02
11 1.2 1.13
12 1.3 1.23
13 1.4 1.33
14 1.3 1.24
15 1.2 1.15
16 1.1 1.06
17 1.0 0.97
iS 0.9 0.88
19 0.8 0.78
20 0.7 0.69
21 0.6 0.59
22 0.5 0.50
23 0.4 0.40
24 0.3 0.31
25 0.2 0.20
26 0.1 0.10
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APPENDIX B. SPLIT-LEVINSON PROGRAMS
C PROGRAM TO CALCULATE THE NTH ORDER FIR PREDICTOR FILTER USING
C THE SYMMETRIC AND ASYMMETRIC SINGULAR PREDICTOR POLYNOMIALS,
C THE SPLIT-LEVINSON RECURSION FORMULA, AND THE AUTOCORRELATION
C FUNCTION OF THE INPUT SEQUENCE.
C VARIABLE DEFINITIONS
C SIGMAN - N-TH DEGREE NORM OF THE FILTER.
C KEVEN - INTEGER VARIABLE USED TO CONTROL ACCESS TO
C SUBROUTINE EVEN WHEN THE INDEX VARIABLE K IS AN
C EVEN INTEGER.
C LAMDA - REAL VECTOR USED WHEN DEFINING THE SINGULAR
C LAMDAS PREDICTOR POLYNOMIAL (PK(Z)) IN TERMS OF THE
C NORMALIZED SYMMETRIC AND ANTISYMIMETRIC PARTS OF
C THE PREDICTOR POLYNOMIAL AK(Z).
C LAMDA(K) = I + RHO(K)
C LAMDAS(K) = 1. - RHOS(K)
C ALPHA - REAL VECTOR USED TO SIMPLIFY THE THREE-TERM
C ALPHAS RECURRENCE RELATION FOR THE SINGULAR PREDICTOR
C POLYNOMIALS OF THE SAME TYPE.
C ALPHA(K) = LAMDA(K-1)*(2. - LAMDA(K)), OR
C ALPHA(K) = TAU(K)/TAU(K-I)
C ALPHAS(K) = TAUS(K)/TAUS(K-1)
C KODD - INTEGER VARIABLE USED TO CONTROL ACCESS TO THE
C SUBROUTINE ODD WHEN THE INDEX VARIABLL K IS AN
C ODD INTEGER.
C TAU - REAL VECTOR OF "MODIFIED NORM VALUES". THE
C TAUS VALUES ARE CALCULATED FROM A SUMMATION OF
C PRODUCT TERMS OF THE AUTOCORRELATION LAGS, AND
C THE COEFFICIENTS OF THE SINGULAR PREDICTOR
C POLYNOMIALS.
C RHO - REAL VECTOR OF REFLECTION COEFFICIENTS RHO(1),
C RHOS RHO(2),...,RHO(N).
C N - DESIRED ORDER OF THE PREDICTOR POLYNOMIAL.
C C - REAL VECTOR OF AUTOCORRELATION LAGS R(O),R(1),
C R(2),... ,R(N)
C P - ARRAY OF SINGULAR PREDICTOR POLYNOMIAL
C PS COEFFICIENTS FROM P(O,O),... P(N+1,N).
C A - ARRAY OF PREDICTOR POLYNOMIAL COEFFICIENTS.
C AS EACH I-TH ROW OF THE ARRAY CONTAINS THE
C PREDICTOR POLYNOMIAL COEFFICIENTS FOR THE I-TH
C ORDER PREDICTOR POLYNOMIAL.
C T - INTEGER VARIABLE USED IN THE SUBROUTINE ODD
C IN THE COMPUTATION OF THE TAU(K)'S.
C L - DUMMY VARIABLE USED DURING THE CALCULATION
C OF THE SYMMETRIC SINGULAR PREDICTOR POLYNOMIAL
C COEFFICIENTS.
C VARIABLE DECLARATIONS
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DEAL C(O: 100) ,P(O: 100,0: 100),TAU(O: 100)

REAL ACO: 100,0: 100),LAM!DA(0: 100) ,RHO( 100),SIG MAN
REAL PS(0: 100,0: 100),AS(0: 100,0: 100)
REAL RHOS( 100) ,ALPHAS( 100) ,TAL'S(0: 100,),SIGMfAS
REAL AR(O:3O),W(0:5000),S(0:3000),SIGMA(O: 100)
REAL R(0: 100) ,ALPHA( 100) ,LAMDAS(O: 100)
REAL AA(0: 100,0: 100) ,GA>I1(50),LAM-K,LA1( 100)
INTEGER MI,LL, IX,T,KODD,KEVEN,L,N

OPEN(UNIT=4,BLANK='ZERO')
C INITIALIZE FILTER ORDER

READ(4, 100)N
LL =N
IX = 1913
M1 = 3000

WRITE(6 ,300)
WRITE(6,'.00)N
WRITE(6,450),M

DO 1 I=0,M
CALL GAUSS(IX,1. ,O. ,V)
W(I) = V

1 CONTINUE
CALL INPUT(LL,W,AR,S,M)

C INITIALIZE AUTOCORRELATION VECTOR C
CALL ACORR(C,S,N+1,M)
WRITE(6,2100)

C INITIAL CONDITIONS FOR THE SYMIMETRIC AND ASYMMETRIC PREDICTOR
C POLYNOMIAL CALCULATIONS.

P(0,0) 2.
P(1,1) 1.
TAU(0) C(O)
LAMDA(O) =1.
KODD I

KEVEN =2

AcIN,O) 1.0
P5(0,0) =0.

PS(1,1) =-1.

TAUS(O) =C(O)

LAMDAS(O) = 1.
AS(N,O) = 1.0
CALL LEV(C,GAfl,N,AA,LAII,SIGMA)
WRITE(6, 1700)
WRITEC 6,1800)
DO 20 J=1,N
WRITE(6,1900)N,J,SIGMA(J) ,LAM(J) ,AA(N,J)

20 CONTINUE
C SYMMETRIC & ASYMMETRIC SPLIT-LEVINSON RECURSION

WRITE(6, 800)
WRITE(6,850)
WRITEC 6,900)
DO 99 K=1,N
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P(K,O) = 1.
PS(K,O) = 1.

C CALL STATEMENTS FOR EVEN OR ODD VALUES OF INDEX K
IF(K. EQ. KODD)THEN

CALL AODD(C,PS,K,N,TAUS,T)
CALL ODD(C,P,K,N,TAU,KODD,T)

ELSEIF(K. EQ. KEVEN)THEN
CALL AEVEN(C,PS,K,N,TAUS,T)
CALL EVEN(C,P,K,N,TAU,KEVEN,T)

ENDIF
ALPHA(KM TAU(K)/TAU(K-1)
ALPHAS(K) =TAUS(K)/TAUS(K-1)

C LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
DO 40 1=1,7
P(K+1,I) =P(K,I) + P(K,I-1) - ALPHA(K)*P(K-1,I-1)
PS(K+1,I] PS(K,I) + PS(K,I-1) - ALPHAS(K)*PS(K-1,I-1)

C DECISION PATH TO CALCULATE SYMMIETRIC SINGULAR PREDICTOR COEFFICIENTS
IF(I.LT.T .OR. I.EQ.K)GOTO 40
L = K+1
DO 50 J=I+1,K
P(L,J) = P(L,L-J)

50 PS(L,J) = -PS(L,L-J)
40 CONTINUE

LAMIDA(K) =2. -(ALPHA(K)/LAMIDA(K-l))

LAMDAS(K) = 2. -(ALPHAS(K)/LAMDAS(K-1))
C REFLECTION COEFFICIENT CALCULATION

RHO(K) =LAMDA(K) - 1.
RHOS(K) =1. - LAMDAS(K)
WRITE(6, 1000)K,RHO(K) ,Rl{OS(K) ,GAM(K)

99 CONTINUE
C CALCULATION OF N-TH ORDER NORM (SIGMAN) AND N-TH ORDER PREDICTOR
C COEFFICIENTS, A(N,1),A(N,2),. .. ,A(N,N)

SIGMAN = LAMDA(N)*TAU(N)
SIGMAS = LAMDAS(N)*TAUS(N)
WRITE(6, 1100)
WRITE(6 ,600)
WRITE(6, 1200)
DO 60 I=1,N
A(N,I) =A(N,I-1) + P(N+1,I) - LAMDA(N)*P(N,I-1)
AS(N,I) =AS(N,I-1) + PS(N+1,I) - LAMDAS(N)*PS(N,I-1)
WRITE(6, 1300)I,TAU( I) ,TAUS(I) ,ALPHA( I) ,ALPHAS( I) ,P(1+1, I),

+PS(I+1,I),A(N,I) ,AS(N,I)
60 CONTINUE
100 FORMAT( 12)
200 FORMAT(F12.6)
300 FORMATC1l')
400 FORMAT(' FILTER ORDER =',13)
450 FORMAT('-',' NUMBER OF SAMPLE POINTS =',15)

600 FORMAT('-' ,103X,'FILTER COEFFICIENTS')
700 FORMAT(5X,I3,11X,FlO.4,21X,F1O.4)
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800 FORNAT('-',21X,'REFLECTION COEFFICIENTS')
850 FORNAT( '-' ,25X, SPLIT-LEVINSON' )
900 FORMAT(5X,'INDEX' ,8X,'SYMMIETRIC' ,9X,'ANTISYM.METRIC' ,9X,

+'LEVINSON')
1000 FORMAT(5X,I3,10X,F12.6,12X.F12.6,12-X,F12.6)
1100 FORMAT('-' ,5X,'FILTER PARAMETERS FROM SPLIT LEVINSON RECURSION')
1200 FORMAT(5X,'INDEX',6X,'TAU(K)',4X,'TAU*"(K)',4X,'ALPHA(K)',4X,

+'ALPHA-,-(K)',4X,'P(K)',4X,'P*(K)',6X,'SYMMIETRIC',6X,'ASYMMETRIC')
1300 FGR'MAT(5X,I3,6X,F12.6,3X,F12.6,3X,F12.6,4X,F12.6,3X,Fl12.6,2X,

+F 12. 6, 2X,F 10. 4, X, F 10. 4)
1700 FORMAT( '-' ,5, 'FILTER PARAMETERS FROM LEVINSON RECURSION')
1800 FORNIAT('-',8x,'INDEX',8X,'SIG MA(K)',5X,'LAM-DA(K)',8X,'FILTER

+COEFFICIENTS')
1900 FORMIAT(8X,I2,I3,7X,F12.6,6X,F12.6,12X,F12.6)
2000 FORMAT(5X, 'SPLIT-LEVINSON RECURSION CALCULATIONS')
2100 FORMAT(3X,'INDEX' ,3X,'KN0WN COEFFICIENTS' ,5X,'AUTOCORRELATION

+FUNCTION C(K)')
?200 FORMAT(2X,3,4X,F12.6)
2300 FORMAT(5X,I3,40X,F12. 6)

WRITE(6,300)
END
SUBROUTINE AODD(C,PS,K,N,TAUS,T)

C THIS SUBROU TINE CALCULATES THE ANTISYNMETRIC "MODIFIED
C NORMS" WHEN THE INDEX K IS AN ODD INTEGER.

REAL C(0: 100,),PS(0: 100,0: 100) ,TAUIS(0: 100)
INTEGER T
T = K-1)/2
TEMP = 0.*
DO 5 I=0,T

5 TEMiP = TEMP + (C(I) - C(K-1))*PS(K,I)
TAUS(K) =TEMP
RETURN
END

SUBROUTINE ODD(C,P,K,N,TAU,KODD,T)
C THIS SUBROUTINE CALCULATES THE "MODIFIED NORMS'" TAU(K)'S)
C WHEN THE INDEX K IS AN ODD INTEGER.

REAL C(0: 100),P(0: 100,0: 100) ,TAU(0: 100)
INTEGER T
T = (K+1)/2
TEMP = 0.
DO 15 I=O,T-1

15 TEMP = TEMP + (C(I) + C(K-I))*P(K,I)
TAU(K) = TEMP
KODD = KODD + 2
RETURN
END

SUBROU'TINE AEVEN(C,PS,K,N,TAUS,T)

C SUBROUTINE CALCULATES THE VALUE OF THE ANTISYMMETRIC

C "MODIFIED NORMS" (TAUS(K)'S) WHEN THE INDEX K IS AN EVEN

C INTEGER.
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REAL C(O: 100),PS(0: 100,0: 100),TAUS(0: 100)
INTEGER T
T = K/2
TEMP= 0.
PS(K,T) = 0.
DO 25 I=0,T-1

25 TEMP = TEMP + (C(I) - C(K-I))*PS(K,I)
TAUS(K) = TEMP
RETURN
END

SUBROUTINE EVEN(C,P,K,N,TAU,KEVEN,T)
C SUBROUTINE CALCULATES THE VALUE OF THE "MODIFIED NORMS"
C (TAU(K)'S) WHEN THE INDEX K IS AN EVEN INTEGER.

REAL C(0: 100),P(0: 100,0: 100),TAU(0: 100)
INTEGER T
T = K/2
TEMP= 0.
DO 35 I=0,T-1

35 TEMP = TEMP + (C(I) + C(K-I")*P(K,I)
TAU(K) = TEMP + C(T)*P(K,T
KEVEN = KEVEN + 2
RETURN
END
SUBROUTINE INPr(LL,W,AR,S,M)

C SUBROUTINE TO GENERATE THE INPUT SEQUENCE FROM A GIVEN FIR
C FILTER AND ZERO MEAN, UNIT VARIANCE WHITE NOISE.

REAL W(O:LM),AR(0:LL),S(0:M)
C CALCULATE INPUT SEQUENCE VALUES BETWEEN 0 AND FILTER ORDER.
C TEMP = 0.

s(o) = W(o)

DO 45 K=I,M
S(K) = W(K) -0.6*W(K-1) + 0.8*S(K-1)

45 CONTINUE
RETURN
END
SUBROUTINE ACORR(C,S,NLAG,M)

C SUBROUTINE TO CALCULATE THE AUTO CORRELATION FUNCTION OF THE
C GIVEN INPUT SEQUENCE.

REAL C(0: 100),S(0: 5000)

INTEGER T
DO 5 I=O,NLAG
TEMP = 0.
DO 15 T-0,M-1-I

TEMP = TEMP + S(T)*S(T+I)
15 CONTINUE

C(1) = TEMP*(I./FLOAT (-i-I))
5 CONTINUE

RETURN
END
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SUBROUTINE LEV(C,GAM,N,AA,LAM,SIGMA)
C SUBROUTINE TO CALCULATE THE PREDICTOR FILTER COEFFICIENTS
C USING THE LEVINSON RECURSION.

REAL AA(0:100,0:100),C(0:N+2),GAM(N),LAM(100)

REAL LAMK,SIGMA(0: 100)
C INITIAL CONDITIONS

AA(O,0) = 1.
SIGMA(0) = C(O)

C COMPUTE LAM(K), RHO(K); UPDATE SIGMA(K) FOR THE NEXT
C ITERATION.

DO 10 K=1,N
LAMK = 0.
AA(K,0) = 1.0
DO 20 I=0,K-1
LAMK = LAMK - C(K-I)*AA(K-1,I)
LAM(K) = LAMK

20 CONTINUE
GAM(K) = LAM(K)/SIGMA(K-1)
SIGMA(K) = SIGMA(K-1) - LAM(K)*GAM(K)

C COMPUTE THE PREDICTOR FILTER COEFFICIENTS

IF(K .EQ. 1)THEN
AA(I,i) = GAM(K)
ELSE
DO 30 I=I,K-1
AA(K,I) = AA(K-1,I) + GAM(K)*AA(K-1,K-I)

30 CONTINUE
AA(K,K) = GAM(K)
ENDIF

10 CONTINUE
RETURN
END
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APPENDIX C. SPLIT LATTICE ALGORITHMS

C PROGRAM TO CALCULATE THE NTH ORDER LATTICE REFLECTION
C COEFFICIENTS FROM A GIVEN SEQUENCE USING THE SYMMETRIC ERROR
C VECTOR, THE ASYMMTRIC ERROR VECTOR, OR THE FORWARD AND
C BACKWARD ERROR VECTORS. VARIABLES DEFINED IN PREVIOUS APPENDICES
C ARE NOT REDEFINED.
C ***** THIS PROGRAM REQUIRES SUBROUTINE INPUT FROM APPENDIX A *****
C VARIABLE DEFINITIONS
c SIG - N-TH DEGREE NORM OF THE FILTER.
C GAM - VECTOR OF REFLECTION COEFFICIENTS CALCULATED BY
C THE LEVINSON RECURSION.
C LAM - REAL VARIABLE USED WHEN CALCULATING THE REFLECTION
C COEFFICIENTS FROM THE LEVINSON RECURSION
C THE REFLECTION COEFFICIENT IN TERMS
C OF THE FILTER NORM IS GIVEN BY:
C RHO(K) = LAM/SIG
C TAU - REAL VECTOR OF "MODIFIED NORM VALUES". THE
C VALUES ARE CALCULATED FROM A SUMMATION OF
C PRODUCT TERMS OF THE SYMMETRIC OR ASYMMETRIC
C PREDICTION ERROR SEQUENCES.
C A - ARRAY OF PREDICTOR POLYNOMIAL COEFFICIENTS.
C AS EACH I-TH ROW OF THE ARRAY CONTAINS THE
C AL PREDICTOR POLYNOMIAL COEFFICIENTS FOR THE I-TH
C ORDER PREDICTOR POLYNOMIAL.
C AR - VECTOR OF COEFFICIENTS FROM THE KNOWN TEST FILTER.
C XO SYMMETRIC OR ASSYMMETRIC PREDICTION ERROR VECTOR
C FOR THE (K-1) STAGE OF THE LATTICE FILTER.
C LL - DESIRED LATTICE FILTER ORDER.
C X1 - SYMMETRIC OR ASYMMETRIC PREDICTION ERROR VECTOR
C FOR THE K-TH STAGE OF THE LATTICE FILTER.
C AT - TEMP STORAGE FOR THE PREDICTION ERROR VECTOR WHILE
C COMPUTING THE (K+l) STAGE PREDICTION ERROR VECTOR.
C FT - SHIFTED FORWARD PREDICTION ERROR VECTOR.
C BT - SHIFTED BACKWARD PREDICTION EROR VECTOR.
C M - DESIRED ORDER OF THE PREDICTOR POLYNOMIAL.
C T - INTEGER VARIABLE USED IN THE PROGRAM.
C W - WHITE NOISE SEQUENCE VECTOR.
C S - INPUT SEQUENCE VECTOR
C F - FORWARD PREDICTION ERROR VECTOR.
C B - BACKWARD PREDICTION ERROR VECTOR.
C VARIABLE DECLARATIONS

REAL AR(30),W(O:5000),S(0:5000),RHO(i00)
REAL A(0: 100,0: 100) ,GAM(20) ,RHOS(100) ,AS(0: 100,0: 100)
REAL ALPHA,X1(O:5000),XO(0:5000),AT(0:5000),AL(O: 100,0: 100)
INTEGER M,LL,IX,T,L,N
OPEN(UNIT=4,BLANK='ZERO')

C INITIALIZE FILTER ORDER
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READ(4, 100)M
C INITIAL CONDITIONS FOR INPUT SEQUENCE GENERATOR

LL = M
N = 5000
IX = 1913
WRITE(6,200)
WRITE(6,300)M
WRITE( 6,400)N
WRITE( 6,500)
WRITE( 6,600)

C LOOP TO GENERATE WHITE NOISE SEQUENCE AND TO READ TEST COEFFICIENTS.
DO 1 I=0,N
CALL GAUSS( IX, 1. ,0.,V)
W(I) = V

1 CONTINUE
C CALL STATEMENT TO GENERATE INPUT SEQUENCE

CALL INPUT(LL,W,AR,S,N)
C CALL STATEMENTS FOR SYNMETRTC, ASYHIMETRIC, AND LEVINSON LATTICE
C RECURSION SUBROUTINES

CALL SLAT(S,M,N,RHO,ALPHA,X1,AT,XO)
CALL ASLAT(S,M,N,RHOS,ALPHA,X1,AT,XO)
CALL LEV(N,GAII,M,S)
WRITE(6 ,700)
WRITE( 6,800)
DO 8O K=1,M
WRITE(6,900)K,RHO(K) ,RHOS(K) ,GAM(K)

8O CONTINUE
DO 90 K=1,M
A(K,O)=l.
AS(K,O)=l.
AL(K,O)=l.
IF(K . EQ. 1)TI{EN
A(1,l) =RHO(K)
AS(1,1) =RHOS(K)
AL( 1, 1) =GAM(K)

ELSE
DO 95 I=1,K-1
A(K,I) =A(K-1,I) + RHO(K)*A(K-1,K-I)
AS(K,I) = AS(K-1,I) + R}OS(K)*AS(K-1,K-I)
AL(K,I) = AL(K-1,I) + GA (K)*AL(K-1,K-I)

95 CONTINUE
A(K,K) =RHO(K)
AS(K,K) =RHOS(K)
AL(K,K) =GAM(K)

END IF
90 CONTINUE

WRITE( 6,1000)
WRITE(6, 1100)
WRITE(6, 1200)
DO 96 K=1,M
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WRITE(6,1300)M,K,AL(M,K),A(Ml,K),AS(M,K)

96 CONTINUE
100 FORMAT(12)
200 FORMAT('I')
300 FORMAT(' FILTER ORDER = ',13)
400 FORMAT(' ',' NUMBER OF SAMPLE POINTS = ',15)
500 FORMAT(' -',10X,'KNOWN FILTER COEFFICIENTS')
600 FORMAT('-',8X,'INDEX',IOX,'FILTER COEFFICIENTS')
700 FORMAT( '-',1OX,'REFLECTION COEFFICIENTS')
800 FORMAT( '-',5X,' INDEX ',3X,'SYMMETRIC',9X,'ANTISYMMETRIC'

+,9X,' LEVINSON ')
900 FORMAT('-',6X,I3,6X,F8.4,12X,F8.4,12X,F8.4)
1000 FORMAT('-',15X,' FILTER COEFFICIENTS ')
1100 FORMAT('-',20X,' LEVINSON ',12X,' SPLIT-LEVINSON ')
1200 FORMAT(5X,' INDEX ',26X,' SYMMETRIC ',4X,' ASYMMETRIC ')
1300 FORMAT(' ',6X,212,10X,F8.4,11X,F8.4,7X,F8.4)

WRITE(6,200)
END
SUBROUTINE SLAT(S,M,N,RHO,ALPHA,X1,AT,XO)

C SUBROUTINE TO COMPUTE THE LATTICE REFLECTION COEFFICIENTS
C USING THE SYMMETRIC PREDICTION ERROR VECTOR.

REAL Xl(O:M+N),XO(O:M+N),RHO(M),S(0:N),ALPHA
REAL AT(0:M+N),A(100,100)

C INITIAL CONDITIONS

INTEGER T
RRHO = 0.
TAU = 0.

C INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND IST
C STAGES OF THE LATrICE. INITIALIZE THE ZERO STAGE MODIFIED NORM

DO 10 T=0,N-1
XO(T) = 2.*S(T)
TAU = TAU + S(T)**2

10 CONTINUE
DO 20 T=0,N
IF(T. EQ. N)S(T) = 0.
IF(T. EQ. 0)THEN

XI(T) = S(T)
ELSE

XI(T) = S(T) + S(T-1)
ENDIF

20 CONTINUE
C LOOP TO COMPUTE THE REFLECTION COEFFICIENTS

DO 101 K-1,M

TTAU = TAU
C STORE TAU(K-1), AND COMPUTE TAU(K).

TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + X1(T)**2

30 CONTINUE
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TAU = TAU/2.
C COMPUTE ALPHA(K), RHO(K); STORE TAU(K) AND RHO(K) FOR
C NEXT ITERATION.

ALPHA = TAU/TTAU
ITAU = TAU
RHO(K) = 1. - (ALPHA/(I. + RRHO))
RRHO = RHO(K)

C LOOP TO COMPUTE THE (K+1) PREDICTION ERROR VECTOR.
DO 40 T=0,N+K
IF(T .EQ. O)THEN
AT(T) = X1(T)
ELSEIF(T. EQ.N+K)THEN
AT(T) = XI(T-1)
ELSE
AT(T) = XI(T) + XI(T-1) - ALPHA*XO(T-1)

ENDIF
40 CONTINUE

C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT Xl INTO XO AND AT INTO Xl)

DO 50 T=O,N+K-1
XO(T) = XI(T)

50 CONTTNUE
DO 60 T=0,N+K
XI(T) = AT(T)

60 CONTINUE
101 CONTINUE

RETURN
END
SUBROUTINE ASLAT(S,M,N,RHOS,ALPHA,X1,AT,XO)

C SUBROUTINE TO COMPUTE THE LATTICE REFLECTION COEFFICIENTS
C USING THE ASYMMETRIC PREDICTION ERROR VECTOR.

REAL Xl(O:M+N),XO(O:M+N),RHOS(M),S(0:N),ALPHA
REAL AT(O: M+N)
INTEGER T

C INITIAL CONDITIONS
RRHO = 0.
TAU = 0.

C INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND 1ST
C STAGES OF THE LATTICE. INITIALIZE THE ZERO STAGE MODIFIED NORM

DO 10 T=0,N-1
XO(T) = 0.

TAU = TAU + S(T)**2
10 CONTINUE

DO 20 T=O,N
IF(T.EQ.N)X1(T) = -S(T-1)

IF(T. EQ. O)THEN
X1(T) = S(T)
ELSE

XI(T) = S(T) - S(T-1)
ENDIF
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20 CONTINUE
C LOOP TO COMPUTE THE REFLECTION COEFFICIENTS

DO 101 K=1,M
C STORE TAU(K-1), AND COMPUTE TAU(K).

TTAU = TAU
TAU = 0.

DO 30 T=0,N+K-1
TAU = TAU + X1(T)**2

30 CONTINUE
TAU = TAU/2.

C COMPUTE ALPHA(K), RHO(K); STORE TAU(K) AND RHO(K) FOR
C NEXT ITERATION.

ALPHA = TAU/TTAU
TTAU = TAU
RHOS(K) = (ALPHA/(1. - RRHO)) - 1.
RRHO = RHOS(K)

C LOOP TO COMPUTE THE (K+I) PREDICTION ERROR VECTOR.
DO 40 T=0,N+K
IF(T .EQ. O)THEN

AT(T) = X1(T)
ELSEIF(T. EQ.N+K)TiHEN

AT(T) XI(T-1)
ELSE
AT(T) = XI(T) + XI(T-1) - ALPHA*XO(T-1)

ENDIF
40 CONTINUE

C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT Xl INTO XO AND AT INTO Xl)

DO 50 T=0,N+K-1
XO(T) = X1(T)

50 CONTINUE
DO 60 T=O,N+K
XI(T) = AT(T)

60 CONTINUE
101 CONTINUE

RETURN
END
SUBROUTINE LEV(N,GAM,M,S)

C SUBROUTINE TO COMPUTE THE REFLECTION COEFFICIENTS FOR AN
C N-TH ORDER LATTICE FILTER FROM THE FORWARD AND BACKWARD
C PREDICTION ERROR VECTORS.

REAL F(0:5100),B(0:5100),FT(0:5100),BT(0:5100),GAM(20)

REAL LAM,SIG,S(O: N)
INTEGER T

C INITIAL CONDITIONS; INITIALIZE FORWARD AND BACKWARD PREDICTION
C ERROR VECTORS.

SIG = 0.

DO 10 I=O,N-1
F(I) =S(I)
B(I) = S(I)
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FT(I) = S(I)
SIG = SIG + S(I)**2

10 CONTINUE
C LOOP TO COMPUTE THE REFLECTION COEFFICIENTS

DO 20 K=1,M
C FORM SHIFTED ERROR VECTORS

DO 30 T=1,N+K-1
BT(T) = B(T-1)

30 CONTINUE
BT(O) = 0.
FT(N+K-1) = 0.
LAM = 0.

C COMPUTE LAM(K), GAM(K); UPDATE K-TH ERROR NORM AND
C STORE FOR NEXT ITERATION.

DO 40 T=1,N+K-2
LAM = LAM - FT(T)*BT(T)

40 CONTINUE

GAM(K) = LAM/SIG
IF(K .EQ. M)GOTO 20
SIG = SIG - LAM*GAM(K)

C COMPUTE (K+I) FORWARD AND BACKWARD PREDICTION ERRORS AND SHIFT
C INTO TEMPORARY VECTORS FOR NEXT ITERATION.

DO 50 T=O,N+K-1
F(T) = FT(T) + GAM(K)*BT(T)
B(T) = GAM(K)*FT(T) + BT(T)

50 CONTINUt
DO 60 T=O,N+K-1
FT(T) = F(T)
BT(T) = B(T)

60 CONTINUE
20 CONTINUE

RETURN
END
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APPENDIX D. NIA PREDICTOR COEFFICIENT PROGRAM

C THIS PROGRAM IS TO COMPUTE THE FIR FILTER COEFFICIENTS
C USING THE SPLIT-LEVINSON ALGORITHM, AND AN AUTOREGRESSIVE
C MOVING AVERAGE PROCESS. VARIABLES DEFINED IN PREVIOUS
C APPENDICES ARE NOT REDEFINED.
C * THIS PROGRAM REQUIRES THE SUBROUTINES ODD, AND EVEN
C FROM APPENDIX A ****
C VARIABLE DEFINITIONS
C ENORM - PREDICTOR COEFFICIENT ERROR NORM.
C ENORM = SQRT((A(O)-AA(O))**2 +...+ (A(N)-AA(N))**2)
C NSTRT - NUMBER OF POINTS OF INPUT SEQUENCE TO START.
C NEND - NUMBER OF POINTS OF INPUT SEQUENCE AT END OF PROGRAM.
C DELX - ERROR VECTOR.
C DELY - ERROR VECTOR.
C NPTS - NUMBER OF INPUT DATA POINTS (0,1,... ,NPTS).

C EXB - BACKWARD PREDICTION ERROR POWER OF X.
C RXY - VECTOR OF X AND Y CROSSCORRLATION ELEMENTS
C AA - VECTOR OF CALCULATED PREDICTOR COEFFICIENTS.
C NX - INDEX FOR X-AXIS OF PLOTTING ROUTINE.
C EN - VECTOR OF PREDICTOR COEFFICIENT NORMS.
C EX - FORWARD PREDICTION ERROR POWER OF X.
C EY - FORWARD PREDICTION ERROR POWER OF Y.
C KY - Y REFLECTION COEFFICIENT.
C KX - X REFLECTION COEFFICIENT.
C LL - FILTER ORDER VARIABLE USED IN SUBROUTINE CORR.
C IX - INTEGER SEED NUMBER USED BY IMSL SUBROUfINE GAUSS.
C RX - X AUTOCORRELATION VECTOR.
C RY - Y AUTOCORRELATION VECTOR.
C B - MA COEFFICIENT VECTOR.
C C - MA COEFFICIENT VECTOR.

C D - MA COEFFICIENT VECTOR.
C T - INTEGER VARIABLE USED IN THE SUBROUTINE ODD
C IN THE COMPUTATION OF THE TAU(K)'S.
C L - DUMMY VARIABLE USED DURING THE CALCULATION
C OF THE SYMMETRIC SINGULAR PREDICTOR POLYNOMIAL

C COEFFICIENTS.
C X - INPUT WHITE NOISE VECTOR.
C M - INDEXING VARIABLE USED IN FIR FILTER COEFFICIENT
C RECURSION (M=1,2,...,N).
C Y - OUTPUT SEQUENCE FROM FIR TEST FILTER.
C VARIABLE DECLARATIONS

REAL P(0: 100,0: 100) ,TAU(0: 100) ,C(0: 50) ,B(0: 50) ,EN(200)
REAL A(0: 100,0: 100) ,LAMDA(0: 100) ,X(0: 10000) ,D(0: 50)

REAL AR(0:30),Y(0:10000),EY(0:50),EX(0:50),KX(50)
REAL DELX(0:50),DELY(0:50),EXB(0:50),KY(50),XX(200)
REAL RX(0:100),ALPHA(100),RY(0:2),RXY(0:100),AA(O:100)
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INTEGER M,LL,IX,T,KODD,KEVEN,L,N,NPTS
C DESIRED FILTER ORDER AND THE TEST FILTER COEFFICIENTS
C ARE READ FROM A DATA FILE (FILE FTO4FOO1).

OPEN(UNIT=4,BLANK='ZERO')

C INITIALIZE FILTER ORDER AND TEST FILTER COEFFICIENTS
READ(4,100)N
LL = N
DO 20 K=O,LL
READ(4,700)AR(K)

20 CONTINUE
NPTS = 4000

WRITE(6,300)
WRITE(6,400)N

IX = 1913
WRITE(6,600)NPTS

C GENERATE (NPTS+I) WHITE NOISE SEQUENCE
DO 10 I=O,NPTS
CALL GAUSS(IX,I. ,O.,V)
X(I) = V

10 CONTINUE
C CREATE T\iPrT SEOCENCE FROM GIVEN FIR TEST FILTER

CALL INPUT(LL,X,AR,Y,NPTS)
C INITIALIZE AUTOCORRELATION VECTOR RX,RY, AND CROSSCORRELATION
C VECTOR RXY

CALL CORR(N+1,NPTS,X,Y,RX,RY,RXY)
WRITE(6,800)
DO 30 I=O,N
WRITE(6,900)I,AR(I),RX(I)

30 CONTINUE
C INITIAL CONDITIONS FOR MOVING AVERAGE MODEL PARAMETERS

BOO = -RXY(O)/RX(O)

EY(O) = RY(O) - BOO*RXY(O)

EX(O) = RX(O)
DO 40 I=O,l
C(I) I
D(I) = I

40 CONTINUE
B(O) = 1.
B(1) = BOO
DELY(O) = RXY(1) - BOO*RX(l)
DELX(O) = RX(1)

C LOOP TO GENERATE PREDICTOR COEFFICIENT VECTOR
DO 120 M=I,N

C INITIAL CONDITIONS FOR THE SYMMETRIC PREDICTOR POLYNOMIAL
C CALCULATIONS.

P(O,O) = 2.
P(1,1) = 1.
TAU(O) RX(0)
LAMDA(O) = 1.
KODD = 1
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KEVEN = 2
A(M,O) = 1.

C SYMMETRIC SPLIT-LEVINSON RECURSION
DO 70 K=I,M

P(K,O) = 1.
C CALL STATEMENTS FOR EVEN OR ODD VALUES OF INDEX K

IF(K. EQ. KODD)THEN
CALL ODD(RX,P,K,N,TAU,KODD,T)
ELSE IF(K. EQ. KEVEN)THEN
CALL EVEN(RX,P,K,N,TAU,KEVEN,T)

ENDIF
ALPHA(K) = TAU(K)/TAU(K-1)

C LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
DO 60 I=1,T

P(K+I,I) = P(K,I) + P(K,I-l) - ALPHA(K)*P(K-1,I-I)
C DECISION PATH TO CALCULATE SYMMETRIC SINGULAR PREDICTOR COEFFICIENTS

IF(I.LT.T .OR. I.EQ.K)GOTO 60
L = K+l
DO 50 J=I+,K
P(L,J) = P(L,L-J)

50 CONTINUE
60 CONTINUE

LAMDA(K) = 2. - (ALPHA(K)/LAMDA(K-l))
70 CONTINUE

C CALCULATION OF N-TH ORDER PREDICTOR COEFFICIENTS, A(K,I),...A(K,K)
C COMPUTE PREDICTOR COEFFICIENTS FOR K-TH ITERATION

DO 80 I=1,M

A(M,I) = A(M,I-I) + P(M+I,I) - LAMDA(M)*P(M,I-1)
C(I) = A(M,I)

80 CONTINUE
DO 90 J=I,M

D(l) = -C(J)
IF(J .LT. M)THEN
DO 95 I=J+1,M
D(I) = D(I-l)

95 CONTINUE
ENDIF

90 CONTINUE
D(0) = 0.
D(M+l) = 1.

C UPDATE PREDICTION ERRORS
XBTMP = 0.

XTMP = 0.
DO 25 I=1,M
XBTMP = XBTMP + C(I)*RXY(M+1-I)
XTMP = XTMP + C(I)*RX(M+1-I)

25 CONTINUE
DELX(M) = RX(M+I) - XTMP

EXB(M) = RXY(M+l) - XBTMP

C UPDATE REFLECTION COEFFICIENTS
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KX(M) = -DELX(M-1)/EX(M-1)
EX(M) = EX(M-1) + KX(M)*DELX(.1-1)
KY(M) = -DELY(M-1)/EX(M)
EY(M) = EY(M-1) + KY(M)',EXB(M)

C UPDATE B VECTOR
B(YI+1) = 0.
DO 45 10O,M+1
B(I) = B(I) + KY(M)',D(I)

45 CONTINUE
YTMP = 0.
DO 55 I=1.M+1
YTMP = YTMP - B(I)*RX(M+2-I)

55 CONTINUE
DELY(M) = RXY(M+1) - YTMP
IF(M .EQ. N)THEN
WRITE(6, 1000)N
WRITE(6, 1100)
DO 130 K=0,M,,
WRITE(6, 1200)K, -B(K4-1)
AA(K = -B(K+1)

130 CONTINUE
ENDIF

120 CONTINUE
100 FORMAT(12)
200 FORMAT(' ')
300 FORMAT('1')
4+00 FORMAT(' FILTER ORDER = ',13)
500 FORMAT('-')
600 FOR IAT('-',' NUMBER OF SAMPLE POINTS =',15)

-700 FORMAT(F8. 4)
8CC FORMAT('-','5X,'INDEX',5X,'KNO)WN COEFFICIENTS' ,5X,

+'AUTOCORRELATION FUNCTION R(K)')
900 FORMIAT(' ',5X,I3,11X,F8.4,21XF8.4)

1000 FORMAT('-',1OX,'PREDICTOR COEFFICIENTS FOR FILTER ORDER =',13)
1100 FORM4AT('-' ,5X,'INDEX' ,12X,'FIR PREDICTOR COEFFICIENTS')
1200 FORMAT(' ',5X,13,23X,F8.4)

WRITE(6 ,300)
END

SUBROUTINE INPUT(LL,X,AR,Y,NPTS)
C SUBROUTINE TO GENERATE THE INPUT SEQUENCE FROM A GIVEN FIR
C FILTER AND ZERO MEAN, UNIT VARIANCE WHITE NOISE.

REAL X(O:NPTS),AR(O:LL),Y(O:NPTS)
C CALCUT.ATF INPUT SEQUENCE VALUES BETWEEN 0 AND FILTER ORDER.

DO 45 K0O,NPTS
TEMP = 0.
IF(K. LE. LL)THEN
LU=K

* . ELSE
LU=LL

ENDIF
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J =K
DO 55 10O,LU
TEMP = TEMP + AR(I)*X(J)
J = J-1

55 CONTINUE
Y(K) = TEMP

45 CONTINUE
RETURN
END
SUBROUTINE CORR(NLAG,NPTS,X,Y,RX,RY,RXY)

C SUBROUTINE TO CALCULATE THE AUTOCORRELATION FUNCTION X AND Y AND
C THE CROSSCORRELATION FUNCTION BETWEEN X AND Y

REAL RX(O:NLAG),Y(O:NPTS),X(0:NPTS),RXY(O:NLAG),RY(0:2)
INTEGER T

C COMPUTE THE AUTOCORRELATION OF X AND THE CROSSCORRELATION OF
C X AND Y FOR LAGS 0,1,2,... ,NLAG

DO 5 I=O,NLAG
XTEMP =0.

XYTEMP 0.
C COMPUTE THE AUlTOCORRELATION OF X AND THE CROSSCORRELATION OF
C X & YFORLAG I

DO 15 T=O,NPTS-1-I
XTEMiP =XTEMP + X(T)*X(T+I)
XYTEMP =XYTEMP + X(T)*Y(T+I)

15 CONTINUE
RX(I) =XTEMP*(1./FLOAT(NPTS-1-I))
RXY(I) =XYTEMP*(l. /FLOAT(NPTS-1-I))

C COMPUTE THE ZERO LAG ALT0CORRELATION FUNCTION OF Y
IF(I . EQ. O)THEN
RY(O) = 0.
DO 16 J=O,NPTS-1
RY(O) = RY(O) + Y(J)**2

16 CONTINUE
RY(O) = RY(O)*(l./FLOAT(NPTS-1))

END IF
5 CONTINUE

RETURN
END
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APPENDIX E. EXTENDED PRONY PROGRAM

C PROGRAM TO CALCULATE THE NTH ORDER LATTICE REFLECTION
C COEFFICIENTS FROM A GIVEN SEQUENCE USING THE SYMMETRIC ERROR
C VECTOR, THE ASYMMTRIC ERROR VECTOR, OR THE FORWARD AND
C BACKW'ARD ERROR VECTORS.
C VARIABLE DEFINITIONS
C PT - TEMIPORARY ARRAY USED TO AVERAGE PREDICTOR

COEFFICIENTS.
C PP - ESTIMATED NUMBER OF COMPLEX SINUSOIDS PRESENT.
C Al - AMPLITUDE OF ;Ai SINUSOID, (1-4) SINUSOIDS
C PRESENT.

C FS - SAMPLING FREQUENCY.
C Fl - FREQUENCY OF #1 SINUSOID IN TEST SEQUENCE.
C THETAl - DIGITAL FREQUENCY OF #1 TEST ANALOG FREQUENCY.

VARIABLE DECLARATIONS
REAL W(0:5000),S(0:5000),ALPHA(100),ROOTR(100),XCOF(0: 100)
REAL P(0: 100,0: 100),ALPHAS(100),COF(0: 100),ROOTI(100)
REAL X1(0:5000),XO(0:5000),AT(0:5000),PS(0:100,0:100),PT(0:100)
INTEGER T,PP

OPEN(UNIT=4,BLANK='ZERO')
C INITIALIZE FILTER ORDER

READ(4,100)PP
M = 2*'PP

C INITIAL CONDITIONS FOR INPUT SEQUENCE GENERATOR
IX 1913
A = SQRT(2.)
B = SQRT(2.)
C = SQRT( 10. )

C D = SQRT(2.0)
C E = SQRT(2.0)

Fl = 5.5E+01
F2 7.5E+02

C F3 1.25E+02
C F4 1.75E+02

FS = 2.25E+02
TWOPI = 6.2831853
THETAl = (TWOPI*F1)/FS
THETA2 = (TWOPI*F2)/FS

C LOOP TO GENERATE WHITE NOISE SEQUENCE AND TO READ TEST COEFFICIENT

DO 1 I=O,N
CALL GAUSS(IX,1.,0.,V)
W(I) = C*V
Al = A*COS(TWOPI*(F1/FS)*FLOAT(I))

A2 = B*COS(TWOPI*(F2/FS)*FLOAT(I))
C A3 = D*COS(TWOPI*(F3/FS)*FLOAT(I))
C A4 = E*COS(TWOPI*(F4/FS)*FLOAT(l))

S(I) = Al + A2 + W(I)
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1 CONTINUE
C CALL STATEMENTS FOR SYMMETRIC, ASYMMETRIC, AND LEVINSON LATrICE
C RECURSION SUBROUTINES

CALL SLAT(S,M,N,P,ALPHA,X1,AT,XO)

C CALL ASLAT(S,M,N,PS,ALPHAS,XI,AT,XO)
WRITE(6,200)

WRITE(6,300)PP
WRITE(6,400)M
WRITE(6,500)N

C DISPLAY COEFFICIENTS OF POLYNOMIAL

,RITE(6,600)
DO 11 K=O,M
IF(K .EQ. M)P(M,K)=I.O
WRITE(6,700)M,K,P(M,K)

11 CONTINUE

100 FORMAT(I4)
200 FORMAT('i')
300 FORMAT(' NUMBER OF COMPLEX EXPONENTIALS IN MODEL = ',13)
400 FORMAT( ',' SYMMETRIC FILTER ORDER = ',13)
500 FORMAT(' NUMBER OF SAMPLE POINTS = ',15)
600 FORMAT('-',SX,'INDEX',13X,'COEFFICIENTS')

700 FORMAT(5X,212,16X,FS.4)
WRITE(6,200)

END
SUBROUTINE SLAT(S,M,N,P,ALPHA,X1,AT,XO)

C SUBROUTINE TO COMPUTE THE SYMMETRIC PREDICTOR COEFFICIENTS
C USING THE SYMMETRIC PREDICTION ERROR VECTOR.

REAL XI(0: M+N),XO(O:M+N),ALPHA(M) ,S(O:N)
REAL AT(0:M+N),P(0: 100,0: 100)
INTEGER T

C INITIAL CONDITIONS

KODD= 1
KEVEN = 2
TAU = 0.
P(1,1) = 1.
P(O,O) = 2.

C INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND IST
C STAGES OF THE LA rICE. INITIALIZE THE ZERO STAGE MODIFIED NORM

DO 10 T-O,N-i

XO(T) = 2.*S(T)
TAU = TAU + S(T)**2

10 CONTINUE
DO 20 T=0,N

IF(T. EQ. N)S(T) - 0.
IF(T. EQ. 0)THEN
XI(T) = S(T)

ELSE
XI(T) = S(T) + S(T-1)

ENDIF
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20 CONTINUE
C LOOP TO COMPUTE THE SYMMETRIC PREDICTOR COEFFICT-NTS

DO 101 K=I,M
P(K,0) = 1.0

TTAU = TAU
IF(K .EQ. KODD)THEN

LL = (K+1)/2
ELSE
LL = K/2

ENDIF

C STORE TAU(K-1), AND COMPUTE TAU(K).
TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + XI(T)**2

30 CONTINUE
TAU = TAU/2.

C COMPUTE ALPHA(K); STORE TAU(K) FOR NEXT ITERATION.
ALPHA(K) = TAU/TTAU
TTAU = TAU

C LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
DO 40 I=I,LL
P(K+I,I) = P(K,I) + P(K,I-1) - ALPHA(K)*P(K-1,I-1)

C DECISION PATH TO CALCULATE SYMMETRIC SINGULAR PREDICTOR COEFFICIENTS
IF(I. LT. LL .OR. I. EQ.K)GOTO 40

L = K+l
DO 50 J=I+I,K

P(L,J) = P(L,L-J)
50 CONTINUE

40 CONTINUE
C LOOP TO COMPUTE THE (K+I) PREDICTION ERROR VECTOR.

DO 60 T=0,N+K
IF(T .EQ. 0)THEN
AT(T) = Xl(T)

ELSEIF(T. EQ.N+K)THEN
AT(T) = Xl(T-1)
ELSE
AT(T) = XI(T) + X1(T-1) - ALPHA(K)*XO(T-I)
ENDIF

60 CONTINUE
C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT Xl INTO XO AND AT INTO Xl)

DO 70 T0O,N+K-l
XO(T) = Xl(T)

70 CONTINUE

DO 80 T=0,N+K
XI(T) = AT(T)

80 CONTINUE

IF(K .EQ. KODD)THEN
KODD = KODD + 2

ELSE
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KEVEN = KEVEN + 2
ENDIF

101 CONTINUE
RETURN
END
SUBROUTINE ASLAT(S,M,N,PS,ALPHAS,X1,AT,XO)

C SUBROUTINE TO COMPU': THE LATTICE REFLECTION COEFFICIENTS
C USING THE ASYMMETRIC PREDICTION ERROR VECTOR.

REAL XI(O:M+N),XQ(0:M+N),PS(0:100,0: 100),S(O:N),ALPHAS(M)
REAL AT(0:M+N)
INTEGER T

C INITIAL CONDITIONS
PS(0,0) = 2.
PS(I,1) = 1.
KODD = 1
KEVEN = 2
TAU = 0.

C INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND 1ST
C STAGES OF THE LATTICE. INITIALIZE THE ZERO STAGE MODIFIED NORM

DO 10 T=0,N-1

XO(T) = 0.
TAU = TAU + S(T)**2

10 CONTINUE
DO 20 T=O,N

IF(T. EQ.N)XI(T) = -S(T-1)
IF(T. EQ. O)THEN
XI(T) = S(T)

ELSE
Xl(T) = S(T) - S(T-1)
ENDIF

20 CONTINUE
C LOOP TO COMPUTE THE REFLECTION COEFFICIENTS

DO 101 K=1,M
PS(K,O) = 1.
TTAU = TAU
IF(K .EQ. KODD)THEN
LL = (K-1)/2

ELSE
LL = K/2

ENDIF
C STORE TAU(K-1), AND COMPUTE TAU(K).

TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + X1(T)**2

30 CONTINUE
TAU = TAU/2.

C COMPU TE ALPHA(K) ; STORE TAU(K) FOR NEXT ITERATION.
ALPHAS(K) = TAU/TTAU
TTAU = TAU

C LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
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DO 40 I=I,LL
PS(K+1,I) = PS(K,I) + PS(K,I-1) ALPHAS(K)*PS(K-1,I-I)

C DECISION PATH TO CALCULATE SY.IETRIC SINGULAR PREDICTOR COEFFICIENTS
IF(I. 1T. LL .OR. I. EQ.K,OTC 40

L = K+l
DO 50 J=I+1,K

PS(L,J) = -PS(L,L-J)
50 CONTINUE
40 CONTINUE

C LOOP TO COMPUTE THE (K+1) PREDICTION ERROR VECTOR.
DO 60 T=O,N K
IF(T .EQ. 0)THEN
AT(T) = XI(T)

ELSEIF(T. EQ. N+K)THEN
AT(T) = X1(T-1)
ELSE
AT(T) = X1(T) + Xl(T-1) - ALPHAS(K)*XO(T-1)

ENDIF
60 CONTINUE

C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT Xl INTO XO AND AT INTO Xl)

DO 70 T=O,N+K-l
XO(T) = Xl(T)

70 CONTINUE
DO 80 T=O,N+K
Xl(T) = AT(T)

80 CONTINUE
IF(K .EQ. KODD)THEN
KODD = KODD + 2

ELSE
KEVEN = KEVEN + 2

ENDIF
101 CONTINUE

RETURN
END
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